

Cell ExM Kit

QUICK START GUIDE

Research use only. Not for diagnostic procedures.

Contents and storage

Cell ExM Kit

CC6232 20 Samples

Storage:

Store at 4 °C for 12 months.

Store ExM Buffer D at –20 °C when not in use for extended periods.

Component	Cat. No. / Size	Qty
ExM Buffer A	CC6201	4 mL
ExM Buffer B	CC6202	4 mL
ExM Buffer C	CC6203	40 uL
ExM Buffer D	CC6204	40 uL
Plastic sheet	φ10 mm / φ15mm	2
Stickers	CC6206	20

Introduction

Expansion microscopy (ExM) is a super-resolution imaging method in which biological samples are isotropically expanded by swellable hydrogels. This approach enables high-resolution imaging with conventional wide-field microscopes and super-resolution imaging with standard confocal microscopes. The method is compatible with proteins, nucleic acids, and lipids. This product has been optimized for immunofluorescence staining of cultured cells, allowing uniform three-dimensional expansion of approximately 4.5-fold, which corresponds to an effective ~4-fold increase in spatial resolution (from ~250 nm to ~60 nm with wide-field microscopy, and from ~120 nm to ~30 nm with confocal microscopy). The isotropic expansion preserves the spatial distribution of biomolecules and provides advantages such as reduced cost and increased imaging depth compared to purely optical super-resolution techniques.

Additional Material Required

- 1.cell culture coverslip
- 2. dark chamber
- 3. inverted fluorescence microscope/ Confocal/ SIM / STED/ STORM

Quick Protocol

Experiment following the immunofluorescence protocol. Once fluorescently stained cell-seeded coverslips are obtained, continue with the procedure.

Note: Use the original fluorescent antibody at 4-8x its standard concentration.

Mix gel solution

1. Fixation:

Rinse the circular coverslips in the cell culture plate with ddH₂O, then **add 200 µL of ExM Buffer A** onto the samples. Incubate at room temperature in the **dark for 30 minutes.** After incubation, remove ExM Buffer A and **wash the coverslips** with ddH₂O, then carefully remove excess liquid.

2. Gel Preparation:

Prepare the gel solution according to Table 1.

Table 1. Reagent volumes for gel solution		
Reagents	Volume	
ExM Buffer B	196	
ExM Buffer C	2	
ExM Buffer D	2	
*200 µL of the reaction mixture is generally sufficient to cover one 10 mm/15mm well with the sample fully.		

3

Add 200 µL of gel buffer/ well Incubate in the dark for 30 minutes

expand 2 hours or at 4 °C overnight

imaged directly with an inverted fluorescence microscope

3. Gel Embedding:

Peel off the sticker and firmly attach the adhesive side to the underside of the plastic sheet. Place the $\varphi 9$ mm / $\varphi 15$ mm cell culture coverslips into the corresponding 10 mm and 15 mm wells. Add **200 µL of gel buffer** to each well, then cover the samples by placing the non-adhesive side of the sticker onto the plastic sheet. Incubate in the dark for **30 minutes**.

4. Expansion:

Remove the sticker and place the gel containing the cell culture coverslips into excess water. Allow the gel to expand at room temperature for **2 hours or at 4°C overnight**. Discard the excess water, carefully remove the gel sample, cut it into small pieces, and transfer them to a glass-bottom culture dish. Add a small amount of ddH₂O to keep the sample moist and to prevent it from floating.

5. **Imaging:**

No coverslipping is required for the expanded gel. Position the gel with the cell-containing side facing down (the side with the coverslip impressions) and image directly using an inverted fluorescence microscope.

Note:

- 1. Glass-bottom culture dishes are more suitable for observation under an oilimmersion objective. Make sure the gel stays moist when using an air objective.
- 2. During the expansion process, the cell culture coverslip will separate from the gel, as the cell samples have already been transferred into the gel.
- 3. DAPI will dissociate from nucleic acids during the gel expansion process. Therefore, if nuclear staining is required, the expanded gel should be re-stained with DAPI solution prepared in ddH₂O for 5 minutes, followed by washing with ddH₂O before microscopic observation or imaging. Do not use PBS to prepare the DAPI solution, otherwise, the gel will shrink.